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Abstract :-   

The Effect of self-gravitational instability of an infinite homogeneous, viscous and magnetized gas particle medium in the presence of fine-
dust- particles has been studied in corporating thermal conductivity and arbitrary or radiative heat-loss functions. From linearized equations 
of the system, a general dispersion relation is obtained using normal mode analysis.The conditions of modified Jeans instability and 
stability are discussed in the different cases of our intersest. We find that the presence of arbitrary radiative heat-loss functions and thermal 
conductivity modifies the fundamental Jeans condition of gravitational instability into a radiative instability condition. It is found that the 
radiative modes of instability arises in the medium depends on the arbitrary radiative heat-loss functions on the local density and 
temperature of the system. Applying Routh –Hurvitz criterion, the stability of the medium is discussed and it is found that Jeans criterion 
determines the stability of the medium Thermal Conductivity modifies the Jeans criterion and the viscosity has damping effect. It is found 
that the effect of fine-dust-particles is to destabilize the system. It is also found that the condition of instability for propagation parallel to the 
magnetic field is independent of the magnetic field strength. For transverses propagation, however, the condition of instability depends on 
the magnetic field strength.  

Key – Words: Heat- loss Functions, fine-dust-Particles, Gravitational Instability, Thermal Conductivity, Finite Electron Inertia and Viscosity. 

1. Introduction:- 

The fragmentation of interstellar matter is a vitally important phenomenon in star formation. The gravitational 
instability of an infinite homogeneous self-gravitating gas was first investigated by Jeans[1]. Latter, in view of 
existence interstellar magnetic field Chandrasekhar[2] has re-analyzed the same problem. Jeans[3] analysed the 
gravitational instability in an infinite homogenous medium, who derived the expression for maximum size of a 
uniform gravitating mass which is stable to small fluctuations in density[4]. The effect of fine-dust-particles on 
the gravitational instability of an infinite homogeneous gas particle medium has been investigated by 
Sharma[5]. 

In addition to this, the problem of magneto-gravitational instability of interstellar is of considerable importance 
in connection with protostar and star formation in magnetic dusty clouds. Magnetic field can provide pressure 
support and inhibit the contraction and fragmentation of interstellar clouds.Langer[6]has investigated the 
stability of interstellar clouds against gravitational collapse and fragmentation in the presence of magnetic field.. 
The problem of star formation in clouds containing magnetic field has been analyzed by Mestel and 
Spitzer[7]and they have derived a stability criterion, in the form of a Jeans length for collapse based on the 
virial theorem.  

The nature of the coupling of the magnetic field to the neutrals through ion-neutral collisions has been analyzed 
by Spitzer[8-9]. A group of authors led by Sharma[10-12] has dealt with various problems of fluid dynamics in 
presence of fine-dust-particles considering the effect of fine-dust-particles on the onset of Benard convection, 
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gravitational and magneto-gravitational instabilities of an infinite conductiviting homogeneous 
medium..Chhajlani[13] et.al. Investigated the effect of finite conductivity on magneto-gravitational instability 
and fine-dust-particles of a homogeneous medium. Chhajlani and Purohit[14] have studied the problem of 
stability of a self-gravitating, infinite homogeneous gas in the presence of fine-dust-particles incorporating 
magnetic field, finite Larmor radius corrections and Hall effect. 

The thermal conductivity has also its importance in the study of the interstellar medium. Field[15] suggested 
that the observed filamentary condensations in nebulae may be due to thermal effects. The effect of thermal 
conductivity on magneto-gravitational instability incorporating different parameters has been studied by several 
authors [Vyas and Chhajlani[16], Chhajlani and Vaghela[17], Vaghela and Chhajlani[18-19] and Chhajlani and 
Parihar[20].The gravitational instability of an infinite homogeneous viscous thermal conducting plasma of finite 
electrical conductivity in the presence of hall currents has been investigated by Ali and Bhatia[21]. 

Along with this, it is well known that thermal and radiative effects play an important role in the stability 
investigations. Aggrawal and Talwar[22] have investigated the problems of magneto thermal instability having 
heat-loss function. Bora and Talwar[23-24] have studied the problem of thermal instability, having bearing on 
the formation of astrophysical condensations for a hydromagnetic field. The thermal instability in a star-gas 
system has been investigated by Talwar and Bora[25] Pensia[26-27] et.al. investigated the magneto-thermal 
instability of self gravitating viscous Hall plasma in the presence of fine-dust-particles. 

In all the above mentioned studies. The effect of simultaneous inclusion of the thermal conductivity, radiative 
effects and fine-dust-particles on magento gravitational instability of a gas particle medium is not investigated. 
In view of the importance of radiative effects in astrophysical contexts, we have incorporated radiative effects 
in the investigation of self-gravitational instability of an infinite homogeneous, viscous, thermally conducting 
and magnetized gas particle medium in the presence of suspended particle medium. This aspect forms the 
subject matter of the present study. Although, the present treatment is also highly idealized but nevertheless of 
importance as it may be helpful in gaining an insight into the phenomenon of the gravitational instability. 

2.Linearized perturbation Equation:-  

We consider an infinite homogeneous self-gravitating gas particle medium of thermal conductivity having 
radiative heat-loss effects in the presence of fine-dust-particles and it is acted by a uniform vertical magnetic 
field H(O,O,H). Let u(u,v,ω),v, ρ and N be the gas velocity, the particle velocity, the density of gas and the 
number density of particles. If we assume uniform particle size, spherical shape and small relative velocities 
between the two phases, then the net effect of particles on the gas is equivalent to an extra body force term per 
unit volume KN(v -u) and is added to the momentum transfer equation for gas, where the constant K is given by 
Stoke’s drag formula K = 6 rπρυ  , r being the particle radius and υ  is the kinetic viscosity of clean gas. Self-
gravitational attraction U is added with kinetic viscosity term in equation of motion for gas.  

In writing the equation of motion for particles, we neglect the buoyancy force as its stabilizing effect for the 
case of two free boundaries is extremely small. Inter particles reactions are also ignored by assuming the 
distance between particles to be too large compared with their diameters.  
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The stability of the system is investigated by writing the solutions to the full equations as initial state plus a 
perturbation. The initial state of the system is taken to be quiescent layer with a uniform particle distribution. 
The equation thus obtained are linearized by neglecting the product of two perturbed quantities.  

Hence the linearized  perturbation equation for motion of such medium are: 
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δp δT δρ
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              (9) 

Where δTδU,δp,δρ,  and h(hx, hy, hz) denote respectively the perturbation in density ρ , pressure p,  
gravitational potential U, temperature T and magnetic  field H , G is the gravitational constant, C is the velocity 
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of sound, Kmτ =  and mN is the mass of particles per unit volume, Here T and ρL L  respectively denote 

partial derivatives   
T

and 
T ρ

 ∂ ∂ 
   ∂ρ ∂  

L L of heat-loss function evaluated for the initial state and peω is the 

electron plasma frequency. 

3.Dispersion Relation:- 

Let us assume the perturbation of all the quantities vary as 

Exp.    ( )x z  i K x K z t + +ω                   
               (10) 

Where ω is the growth rate of the perturbation and zx K , K  are the wave numbers of the  

perturbation  along  the x- and z- directions respectively such that 

 

2 2 2
x zK K K+ =                                

               (11) 

Combining equation (8) and (9), we get 

2α σCδp δρ
σ β

 +
=  + 

                

               (12) 

Where σ iω=  

1/2
γpC  
ρ

 
=  

 
is the adiabatic velocity of sound in the medium and 

 ( ) ( )
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L
L L                      

      (13) 

We get the following equations from (1), using (2) - (7), (12) and variations  
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On taking the divergence of equation (1), using (2) - (7), (12) and performing the above said variation we get 
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(14)-(17) can be written in the form 
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              (18) 
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=
ρ

s  
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The determinant of the matrix of (19) gives the dispersion relation 
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              (20) 
             

Eq(20) represents the dispersion relation for an infinite homogeneous, thermally conducting, radiating and self-
gravitating gas particle medium in the presence of fine-dust-particles, having uniform magnetic field in z-
direction. If we neglect the effect of thermal conductivity and radiative term in eq.(20), we get the result as 
obtained by SHARMA10 and that of CHHAJLANI13 et.. al neglecting the contribution of electrical conductivity. 

4. Discussion:- 

It is convenient to discuss this dispersion relation for longitudinal and transverse propagation separately. 

 4.1 Longitudianal propagation:- 
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We assume the perturbation in parallel direction to magnetic field ( )x zK 0 K K,= = . The dispersion relation 
(20) is reduced to  

[ ]
22 2

2
3 2 3 3 2 T

K V  0
 

 σ σ ξ + ξ ξ σ ξ + ξ Ω =   
 F                                   

              (21) 

Resubstituting the values of 2ξ , 3ξ  and 2
TΩ  we get of twelfth degree equation in the terms of σ . This equation 

splits into four factors represting different modes due to various effect discussed below; 

 

The first factor of Equation (21) gives us 

0σ =               
                            
              (22) 

Which is neutrally stable mode. 

This second factor of Eqn.(21) gives the cubic equation 

 

2 2 2 2
3 2 2 24 4 K V K V1 K K 0

3 3
KN   τ

τσ + + + υ τ σ + υ + τ σ+ =  ρ   F F
                    

                (23) 

This dispersion relation show the combined influence of magnetic field, viscosity, finite electron inertia and 
fine-dust-particles on the self gravitational instability of the gaseous plasma. This mode does not depend on 
self-gravitation thermal conductivity and heat-loss function. But this is a stable mode as the last term is constant 
with positive sign, and Eq, (4.3) can never have a negative real root or a complex root whose real part is not 
positive values.This necessary for stability of the system and is satisfied. The sufficient condition is that the 
Routh-Hurwitz criterion must be satisfied, according to which all the principal diagonal minors of the Hurwitz 
matrix must be positive for a stable system and we get 
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We find that all ∆ ’s are positive so we find that a magnetized, viscous gas particle medium is stable even in the 
presence of fine-dust-particles. 

 

The third factor of Equation (21) gives us a quadratic equation  

2 2 2ττσ 1 υK τ σ υK 0
ρ

KN 
+ + + + = 
 

                      

              (24) 

Which is identical to equation (17) of Sharma (1977) and (16) of Chhajlani et. al(1978). This mode is 
independent of thermal conductivity, heat-loss function, self-gravitation and magnetic field. According to the 
necessary and the sufficient condition, equation (24) has all the roots with negative real parts, giving stable 
mode. 

The last factor of Equation (21) gives 

[ ]4 3 2 2 2 2 2 2 2
1 1 j j I I

4 4τσ ξ τβ σ ξ β υK τΩ σ Ω τΩ β. υK σ Ω 0
3 3

   + + + + + + + + + =      
             

               (25) 

This dispersion relation shows the combined effect of viscosity, thermal conductivity, fine-dust-particles and 
radiative heat loss-functions on the self Gravitational instability of gaseous plasma. This mode is independent of 
magnetic field. 

We can also discuss the dispersion relation of eqn. (25) in non-dimensional form in terms of self gravitatation 
and we can draw a curve of the non-dimensional growth rate verses non-dimensional wave number k* for 
various value of thermal conductivity and density dependent radiative heat-loss function. 

The variation of non-dimensional growth rate verses non-dimensional wave number k*are shown in fig. (1-2) 
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                    Fig. 1                                                                        Fig. 2 

 

In fig. 1 we have depicted the non-dimensional growth rate verse non-dimensional wave number k* variation in 
the normalized thermal conductivity effectλ ∗ = 0.0, 1.0, 3.0, 5.0 and the value of other parameter are fixed. 

From fig. 1 we observe that the growth rate is minimum for non thermally conducting medium while the higher 
values of thermal conductivity increased the instability growth rate. In other words we can say that the thermal 
conductivity has destabilizing influence on the system. 

In fig. 2 wave number k* with variation in the normalized density dependent heat-loss function ℒ𝜌∗ = 0.5, 1.0, 
1.5, 2.0. and the value of other parameter are fixed .  

From fig. 2 we analyze that the density dependent heat-loss function plays a same role as thermal conductivity 
and electrical resistivity play to destabilize the system. It means that the increasing values of density dependent 
heat-loss function increases the growth rate of instability. 

Now we can say that eqn. (25) may be reduced to particular cases so that the effect of each factor may be 
discussed separately. 

For only self-gravitating viscous gas particle medium in the presence of fine-dust-particles, we have 
2
IΩ 0,β 0= = and equation (4.5) is reduced to  

[ ]3 2 2 2 2
1 j j

4τσ ξ σ υK  Ω σ Ω 0
3
 + + + τ + =  

          

               (26) 
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This is a third degree equation and it is identical to Eqn. (16) of Sharma (1975) and the condition of instability 
obtained from Eq. (26) from constant term is K<Kj where Kj is the critical Jeans wave number given as 

 

j 2

4πGρK
C

=                                     

               (27) 

And corresponding critical Jeans wave length is  

 

j
πλ C

Gρ
=                     

              (28) 

The system is unstable for all Jeans length jλ λ>  or wave numbers K<Kj thus we find that Jeans criterion of 

instability holds good in the presence of fine-dust-particles on the gravitational instability of an infinite 
homogeneous gas-particle medium. 

It is observed from Dispersion relation Eq.(23),being have two parts. The terms by multiplying 
2 2

2
pe

C K
ω

 appeared 

due to our consideration of finite electron inertia parameter in the present problem. Thus we find that electron 
inertia has a major role on the various modes of dispersion relation. Hence electron inertia is important in the 
problems of magnetic reconnection processes stability of an accelerated plasma and in the plasma confinement 
problems. 

For viscous, non-radiating, but thermally conducting self-gravitating gas particle medium in the presence of 
fine-dust-particles, equation (25) becomes 

 

[ ]4 3 2 2 2 2 2 2
1 K 1 K j j K jI K

2
K jI

4 4τσ ξ τΩ σ ξ Ω υK τΩ σ Ω τΩ Ω Ω . υK σ
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   + + + + + + + +      
+ =            

               
(29) 

Where 

2
2 2

K jI
p

γλKΩ .  ; Ω C` 4πGρ
ρC

= = −
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014                                                                                                      1149 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org 

1
2pC

ρ
 ′ =  
 

  is the isothermal velocity of sound.
 

Equation (29) represents the dispersion relation showing the effect of viscosity and thermal conductivity on the 
gravitational instability of an infinite homogeneous gas particle medium in the presence of fine-dust-particles. 
This is fourth degree equation and the condition of instability obtained from equation (4.9) from constant term 
is K< Kj1,  where Kj1 is the modified critical jeans wave number, given as  

 

j1 2

4πGρK
C

=
′                           

              
(30) 

And corresponding critical Jeans wave length is  

 

 
j1

πλ C
Gρ

′=
             

               
(31) 

On comparing Eq. (27) and (30), it is obvious that due to thermal conduction, the sonic velocity is altered form 
adiabatic to isothermal one in Jeans expression. Also comparing (28) and (31) we have 

  
j1 j

1λ λ
γ

=
               

              
(32) 

Since λ 1,C C′> >  therefore owing to thermal conduction. Jeans length is reduced. Thus the thermal conduction 
destabilizes the system. 

If we consider viscous, self-gravitating radiating and thermally non conducting gas particle medium in the 
presence of fine-dust-particles, then Eq. (25) will reduce to 

 

[ ]4 3 2 2 2 2 2 2 2
1 0 1 0 j j I0 0 I0
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Evidently, if 2
I0Ω < 0 the above equation will possess at least one real positive root implying there-by instability 

of the system. Thus we find that the system is unstable for all the wave number K such that K<Kj2 

Where  
 

1 2

T
j2 j

T T

γK K ρ
T

 
 

=  
 −
  

L

L L            

              
(34) 

It is clear from Equation (34) that in this case the critical Jeans wave number depends on the derivatives of the 
heat-loss function with respect to local temperature and density in the configuration. The critical Jeans wave 
number vanishes if the heat-loss function is independent of temperature ( )T 0  and γ=L

 
times of original 

critical Jeans wave number if the heat-loss function is purely temperature-dependent  ( )T 0=L it may be 

remarked that the critical wave number decreases or increases as the heat-loss function respectively increases or 
decreases with increases in density. 

Owing to simultaneous effect of all the parameters represented by the original dispersion relation (25), the 
condition of instability obtained from (25) form constant term is  

2
IΩ 0<  , therefore the system represented by 

Equation (25) will remain unstable for all the wave number K<Kj3 

 

Where 

And  

( )2 2
j3 1 I 1

2
ρ T

1 2

2

1 T2

1K a a b
2

ρ ρ4πGρa
CλT λ

16πGρb
λC

 = ± +  

= + −
′

=
′

L L

L

           

               
(35)

 
 

It is observed, from Eq.(35) that the critical number Kj3 is very much different from the classical Jeans value Kj 
and depends upon the thermal conductivity and the derivatives of the heat-loss function with respect to local 
temperature and density in the configuration. It can be easily worked out that for a purely density-dependent 
heat-loss function [ ]T 0=L , the critical wave number is increased or decreased depending on whether the heat-

loss function is an increasing or decreasing function of the density. Furthermore, it can be seen that for a purely 
temperature-dependent heat-loss function ( )T 0=L  which increase with temperature ( )T   0〉L

 
the condition 

(35) suggests a monotonic instability if K<Kj1. 
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However, if instead, the heat-loss function decreases with temperature ( )T   0〈L  the modified Jeans critical 

wave number lies between the values of T

λ
L

and 2

4πGρ
C′

 

We now discuss the dynamical stability of the system by applying the Routh-Hurwitz criterion to Eq. (25). If 
2
IΩ   0〉  then all the coefficients in Eq. (25) are positive and satisfying the necessary condition for the stability. 

To achieve the sufficient condition, the Routh-Hurwitz criterion must be satisfied, according to which all the 
principal diagonal minors of the Hurwitz matrix must be positive for a stable system.   

For Eq. (25) the four principal diagonal minors of Hurwitz matrix are all positive as shown here under 

( )

( )
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2 2 2 2 2 2
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2 2 3 2 2 2 2 2
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2 2 2 2 2 2 2 2 2
3 j j I 1 I I I I
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2 2 2 2 2 2 2 2 2
1 1 I j

β Ω 0

4 4 4 4ξ .β υK υK +τβ ξ . υK τΩ τ β Ω υK
3 3 3 3

 
 
 
 

+ + > 
 
       + +           

 

 since γ 0>
 

 2
4 I 3Δ Ω .Δ 0= >  

Therefore the system represented by (25) will remain stable if  

( )2 2
IΩ . K α 4πGρβ 0= − >

 
Thus we find that for longitudinal wave propagation the gravitating plasma is stable if the condition 

2Kα 4πGρβ−   is satisfied .    

 

4. 2 Transverse propagation:- 

We assume the perturbations in perpendicular direction to magnetic field  
 [ ]x zi.e.K K and K 0= = . The dispersion relation (21) is reduced to  
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2 2

3 2 2 2
3 3 2 3 T 2 3

K Vσ .ξ . σξ σξ ξ Ω ξ ξ 0
 

+ + = 
 F           

  

               (36) 

Resubstituting the values of 2 3ξ ,ξ  and  
2
TΩ  we get twelfth degree equation in term of σ . This equation splits 

into three factors representing different modes due to various effects as discussed below. 

 

The first factor of Equation (36) gives us 

σ 0=                           
                (37) 

This is same as discussed in Eqn.(4.2) and representing stable mode. 

The second factor of Eqation (36) gives us: 

 

2 2 24τσ 1 υK τ σ υK 0
3ρ

KN 
+ + + τ + = 
 

             

              (38) 

This is same as discussed in Equation (24) and representing again stable mode. 

  

The third factor of Equation (36) gives us 
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2 2
2 6 2 5 2 2 2 4

1 1 I j

2 2 2 2 2 2
2 2 2 2 2 2 2 3

I j j I I

2 2 2 2
2 2 2 2 2

j 1 j

V K 6τ σ τ β 2τξ σ 2τξ β ξ τ τΩ τ υK σ
3

8 V K V K V K 8ξ υK τΩ τ τ Ω Ω β β ξ υK τ σ
3 3

4 4 4 V K V KυK τΩ υK υK τ ξ Ω
3 3 3

  
 + + + + + + +   

  
        + + + + + + τ + + +        

       

  − + + + 
  +

F

F F F

F F

( )

2

2 2 2 2
2 2

1 I I I

22 2 2 2 2 2
2 2 2 2 2 2

j 1 I 1

2 2
2 2

I

σ
8 V K V Kβ υK ξ τξ τ Ω τ τξ
3

4 V K 4 4 V K V K 4υK Ω υK υK τ ξ Ω υK ξ
3 3 3 3

4 V KυK Ω β 0
3

 
 

 
   + + + + +    
        + + +β + + + τ+ σ+       

         
  

+ =  
  

F F

F F F

F

             

                
               (39) 

This dispersion relation represents the effect of simultaneous inclusion of the viscosity, finite electron inertia, 
thermal conductivity and heat-loss function on the magneto gravitational instability of a infinite homogeneous 
self-gravitating gas particle medium in the presence of the fine-dust-particles, when disturbances are 
propagating perpendicular to the direction of the magnetic field. The condition for the constant term of Equation 
(4.19) is  

2 2
2
I

V KΩ β 0+ <
F

                                    

              (40) 

Therefore the system represented by Eq. (39) will remain unstable for all the wave number K<Kj4 

Where 

2 2
j4 2 2 2

1 12 2 2 2
ρ T T

2 22 2 2 2

1K a a b
2

ρ ρ4πGρ V 16πGρ Va 1  ; b 1
CλT  C λ C λ  C

− −

 = ± +
 

     = + + − = +    ′ ′ ′ ′     

L L L

F F

               

            (41)  It may be remarked here that 
the critical wave number depends upon the strength of magnetic field, thermal conductivity and derivative of 
general heat-loss function as temperature dependent and density-dependent configuration. It is obvious that the 
magnetized field decreases the Jeans wave number. Thus the magnetized field stabilizes the medium for 
traverse propagation. 
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When,
2 2

2
I

V KΩ β 0
 

+ > 
 F

 equation (39) has all the coefficient positive. Hence according to Hurwitz’s 

necessary condition the system is stable; but this is not a sufficient condition for stability. 

 

5. Conclusions:- 

We have analyzed an infinite homogeneous self-gravitating, viscous and magnetized gas particle medium with 
thermal conductivity and radiative effects in the presence of fine-dust-particles with finite electron inertia. To 
sum up the results we may conclude that in all the cases considered the Jeans instability condition remains 
valid. Viscosity and fine-dust-particles have dissipative effect but do not affect the jeans expression. Thermal 
conduction affects the sonic speed appearing in Jeans expression in replacing adiabatic term by isothermal one. 
For longitudinal propagation the condition of radiative instability and critical Jeans wave number respect to 
local temperature and density in the configuration but do not depend on the magnetic field. But in transverse 
direction, it is found that the condition of radiative instability and critical jeans wave number depend on 
magnetic field along with thermal conductivity and the derivatives of the heat-loss function with respect to local 
temperature and density in the configuration. It is also seen that viscosity and fine-dust-particles do not affect 
the condition of radiative instability. 
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	UThe variation of non-dimensional growth rate verses non-dimensional wave number k*are shown in fig. (1-2)



